
RAPID COMMUNICATIONS

PHYSICAL REVIEW E NOVEMBER 2000VOLUME 62, NUMBER 5
Nonregular languages in the kicked rotor
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A symbolic dynamics of the Markov chain model for trajectories of the kicked rotor~standard map! in sticky
regions near resonant orbits is developed. Two sets of trajectories are shown to correspond to a context-free
and a context-sensitive language, respectively.

PACS number~s!: 05.45.Ac, 89.70.1c
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The connection between computation and the time ev
tion of dynamical systems has been under close scrutiny
physicists for well over a decade~@1–4# and references
therein!. In particular, there have been several studies re
ing symbolic dynamics, a particular encoding of time-ser
data from experimental and mathematical models, to
Chomsky language hierarchy@4,5#, which consists of four
levels of languages, defined by the amount of computatio
power ~time or memory! needed to recognize that a partic
lar string is an instance of the language in question. T
grammar classes are regular, context-free, context-sens
and unrestricted. Several experimental studies@6# have
shown symbolic dynamics of real-life~e.g., chemical, laser
fluids! systems that are described by regular languages
in the ordered and in the chaotic regimes~see also@7#!, while
the transition from order to chaos in the same system
described by Morse-Thue sequences, which have a com
tational requirement broadly in the context-free class@4,8#.

In this Rapid Communication we show that two sets
trajectories of the standard map, a physically realiza
Hamiltonian dynamical system~see@9# for a detailed intro-
duction!, can be described by grammars that are above re
lar. We do this by developing a different three-symbol d
namics for trajectories in the sticky region near a reson
orbit, where a~multi!fractal structure of islands exists. As i
dissipative systems, we find the higher-level languages in
parameter region which corresponds to the order-chaos
sition ~the transition to global stochasticity, in this cas!.
However, in Hamiltonian systems such as the standard m
periodic orbits and the globally stochastic region~both pre-
sumably described by a regular language! coexist with the
stickiness region that concerns us. Therefore, in our exam
the complex behavior corresponds to a restricted set of in
conditions. A similar role for initial conditions in the class
fication of complexity classes has been previously repo
in cellular automata models@10#. As we will show, our sym-
bolic dynamics is closely related to the calculation of tra
port properties of the standard map~see@11,12#!.

Before presenting our languages, we will review so
aspects of both computational languages and the stan
map. The Chomsky hierarchy can be explained in terms
the memory requirements of a finite-state automaton
signed to generate~or recognize! instances of the particula
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language. Regular languages correspond to paths along
rected graph that has no special memory requirements
word in the language is generated by just adding symbol
the end of a shorter, allowed word@7#. Context-free lan-
guages can be generated by substitution rules, and are t
fore parallel rather than sequential in nature~which makes it
intriguing that iterated maps can generate them!. They re-
quire memory in the form of a stack. Context-sensitive la
guages also correspond to substitutions, but with rules wh
are sensitive on positions in the string near to that where
substitution is made~hence the name!. These can be gener
ated or recognized by automata with a memory size prop
tional to the length of the string to be recognized~linear
bound automata!. Finally, unrestricted languages are gen
ated by Turing machines, or automata with an infin
amount of memory tape. These are able to generate all c
putable functions. We remark that the Chomsky hierarch
a broad characterization of the computational power of l
guages and grammars; there are more detailed studies of
cific computational requirements such as number of stack
queues or different functional dependences of memory t
on input string length: see@13# for one-dimensional iterated
maps.

The standard map,

I n115I n1K sinun , ~1!

un115un1I n11 , ~2!

is perhaps the best-known Hamiltonian chaotic map. WitI
denoting angular momentum,u its conjugate angle, andK
the strength of the kick~stochasticity parameter!, this map
represents a Poincare´ section of a periodically kicked rotor
The standard map also approximates other physical si
tions, such as the Fermi accelerator model@9#.

In the present work we are interested inK values around
the transition to global stochasticity, for which the pha
space is a complicated mixture of invariant@Kolmogorov-
Arnol’d-Moser ~KAM !# curves, broken or not, islands~libra-
tional curves!, and chaotic regions. AsK is increased from
zero, the rotational circles~invariant curves that encircle th
phase space cylinder! with rational rotation frequency brea
and become island chains; those with irrational freque
last longer, but eventually become cantori~invariant Cantor
sets!, with the most irrational, as defined by the Diophanti
condition, being destroyed last. Through this process,
regions between islands become chaotic, and gradually
ic
R5883 ©2000 The American Physical Society
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nect until the entire phase space is chaotic. Figure 1 il
trates the nearly self-similar phase space in this reg
through successive zooms of the islands atK51.3.

It has been observed that islands are sticky: since the
tion has to be locally continuous, trajectories on the cha
sea that are close to KAM curves must stay close for so
time. In this regime, surprisingly, even on a connected c
otic component the distribution is not uniform for arbitrari
long times. This leads to anomalous diffusive behavior d
to the nonvanishing contributions of the sticky zones, wh
so far cannot be handled even by the most sophisticated
culations@11#. It is in the search for a full understanding o
this phenomenon that the Markov chain and tree models
pear, and with them the connection to the new symbo
dynamics. While symbolic dynamics have been develo
for the standard map both in the regular regime and the
chastic regime by constructing partitions, for example, fr
homoclinic tangencies and fibers of invariant manifolds~see
@14# and references therein!, here we concentrate on the sym
bolic dynamics for the sticky region. Our approach is
modification of the language developed by Meiss@15#, de-
scribed below. The main difference is that we use strings
represent trajectories and not state labels.

Consider a trajectory that starts on the chaotic compon
and gets close to an island. When invariant circles break
to form cantori, the area of phase space that can cro
broken invariant circle in one iteration~flux! increases gradu
ally. It has been observed that diffusion occurs in jumps@16#
across cantori; one can choose which minimum level of fl
defines the cantori that are considered. Within each reg
surrounded by these cantori the motion is approximately r
dom, so transport can be modeled as a stochastic pro
where the states coincide with the forementioned regions;
states can be counted starting in an invariant circle, an is
or any given region. Transitions in or out of a region c
occur only through an area defined by the stable and unst
manifolds of the end points of a cantorus, known as
turnstile.

FIG. 1. Island structure for the standard map withK51.3. The
figures are successive zooms of phase space, and should be r
the same order as ordinary text.
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Two models can be constructed on this basis. In the M
kov chain model, the probability of getting closer to the
land is less than the probability of getting farther, so the lo
time it takes a trajectory to leave a deep level is compens
directly by the small probability of getting deep inside th
structure. In the Markov tree model, there is also the po
bility of going inside~and eventually leaving! a substructure,
subsubstructure, etc. This is consistent with the long ti
trapping that has been observed, and has important co
quences: it predicts a powerlike decay of correlations@15#,
and hence the nonexistence of a diffusion coefficient.

Now, consider a trajectory in the sticky region near
particular cantorus. The quantity of interest is the distance
the cantorus in the structure. Fix a region~where the trajec-
tory starts! as the origin. The language associated with t
model~Markov chain! consists of three symbols, 1, 0, and̄.
0 means the trajectory stayed in the same region as in
previous time step and 1 (1)̄ means it has moved one leve
closer to ~farther from! the cantorus. This is illustrated in
Fig. 2. In contrast, the respective Meiss symbolic dynam
would label the location at individual time steps with one
for each level that has gone in. In the Markov tree mo
there are two additional symbols, 2 (2)̄, to indicate that the
trajectory has gone inside~outside! the nearest island chain
Note that since the minimum-flux cantori are to a certa
degree arbitrarily chosen~and particularly the outer one!, so
is the sticky region itself.

We definepnm to be the probability that a trajectory ha
advanced exactly to thenth island and exited the sticky re
gion after exactlym time steps. For a given string of lengt
m, recognizing if it is an exiting trajectory is a context-fre
procedure~Ref. @17#, p. 13! that can be performed by a one
counter automaton, or alternatively, by a stochastic pu
down automaton@18#. Eachpnm can be calculated by sum
ming probabilities over all individual trajectories of lengthm
that satisfy the condition onn. Knowing the pnm one can
calculate the probability that a trajectory is trapped dur
exactlym time steps,

p~m!5 (
n52

[m/2]

pnm , ~3!

d in

FIG. 2. Abstract representation ofI -u space in the sticky region
The symbolic dynamics for two exiting trajectories in the Mark
chain model are shown. Thè-shaped regions where transition
can occur are the turnstiles.
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as well as the probability that a trajectory advances to exa
the nth level and exits,

p~n!5 (
m52n

`

pnm . ~4!

To calculate the transition probabilities between two
gions i and j, two quantities are needed: the area of ph
space of thei state and area of the overlap between the tu
stiles. For simplicity, only nearest level transitions will b
taken into account, so only the area of each turnstile is
quired. The calculation of the transition probabilities in ge
eral has to be calculated numerically. In the case of
golden mean cantorus, the structure is simply self-simi
and the flux (DWi) and area (Ai) are

DWi5DW0ai , ~5!

Ai5A0bi , ~6!

whereDW0 andA0 depend on the reference state~the begin-
ning of the string! and thea and b are obtained through
renormalization group theory@16#.

A possible truncation in the calculation of thepnm , mo-
tivated by the fact that the probabilities of going deeper i
the structure are smaller, is to only include exiting trajec
ries for which the first maximum position isn. The recogni-
tion of symbolic strings that satisfy this requirement
closely related to the example given in@4#, pp. 175–177: the
language of 1D random walks that are confined in the reg
between the origin~O! and the first maximum position
(umax) and that come back toO. This language can be simu
lated with a set of 13 production rules and 13 symbo
which serve the role of keeping track of the maximum po
tion (R), of the current position of the random walker (U),
and the difference between both. Three of the 13 produc
rules involve two terminal symbols on the left side, whi
makes the language context-sensitive. Alternatively,
equivalent two-counter finite-state automaton can be c
structed to recognize the language.

To transform this to the Markov chain model we need
additional symbol in the language, 0, which allows the po
tion counters (R, U) to pass through in either the left o
right direction without altering the current state of the fin
automaton or the memory tape. This shows that decid
which strings to include under the truncation just introduc
is a context-sensitive process. Also, by going from a rand
walk to the Markov chain model,we are now considering a
dynamical system.

We have not been able to perform a full analysis of
Markov tree model’s language. First of all, the language
not in the unrestricted class, since even with levels and
lands it is clearly decidable whether or not a finite-leng
ly
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trajectory satisfies the maximum position and exiting con
tions. In order to keep track of walks in the treelike structu
of cantori, one would needk stack symbols, wherek is the
degree of the tree. In the unrestricted language we would
have a context-free language, but the language restricte
the first maximum position would be context-senstive.

The identification and counting of the strings and th
probabilities, as used in Eq.~3!, can be used to calculate th
~average! trapping time for a given region if the trajector
starts inside the structure, and the fluctuations in densit
the trajectory starts far from the island or curve. A prop
calculation would require the identification and summati
of all the pnm terms in this equation, or the truncation whic
we have proposed.

If a globally chaotic component exists, this approach
lows the calculation of the transport coefficients; if a diff
sion coefficient is not adequate, the quantity of interest is
exponent of the~powerlike! time dependence of the rms dis
tance to the original position. This has been numerically
termined@19# to be aroundt1.4 and is approximated by thes
models: the chain model gives twice the value of the ex
nent, while the tree model gives the correct answer. T
result can be calculated by summing over the strings that
two given states, weighted by the length of each string.

The results of this Rapid Communication can be summ
rized as follows: we have developed a symbolic dynam
for trajectories in the Markov tree and Markov chain mod
of motion in the sticky region near islands of the standa
map, a physically realizable dynamical system. These tra
tories are relevant for the calculation of transport proper
in the transition regime between order and chaos. We h
defined languages for the orbits which exit the sticky reg
in the Markov chain approximation. Depending on wheth
all trajectories are considered, or just those in a restricted
we have respectively a context-free and a context-sens
language.

Our finding of high-level languages in the sticky region
consistent both with the complexity of the behavior of t
trajectories and with the difficulty to perform calculations
the transport properties of the system. We remark that
chain and tree models have a metric element as well a
topological one, since the transition probabilities~equiva-
lently, the occurrence of nonzero symbols! depend on which
level is occupied by the trajectory at the time.

The examples in question share two features previou
observed in dynamical systems:~1! the symbolic dynamics
only applies to a particular set of initial conditions, as w
also observed in Ref.@10#, and~2! the high-complexity lan-
guages occur near the order-chaos transition, as has
reported for the period-doubling route to chaos@8#.

We thank Thomas Dittrich, Luz Myriam Echeverry, an
Cris Moore for discussions related to this work.
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